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The regularizing properties of nonlinear iterative methods for solution of type 
I equations with self-conjugate operator are studied. 

Mathematical modeling of complex heat-exchange processes involving converse problems has 
recently attracted much attention [i, 2]. It is known that the most effective approach to 
solution of incorrect problems is the use of regularizing (in the sense described by Tikhnov 
[3]) algorithms. Together with Tikhonov's variation regularizing algorithm [3], nonlinear 
iterative methods are also used: accelerated release, conjugate gradients, etc. One of the 
major problems in the theory of iterative algorithms is establishment of their regularizing 
properties. We will note that the stability of nonlinear iteration processes was considered 
in [4-7]. The present study will present a new family of iterative regularizing algorithms 
and a numerical example of thermal flux determination from temperature measurements within a 
specimen. 

The various converse thermal conductivity problems (see [2]) reduce to solution of the 
equation 

A x : f ,  fER(A)cH, A* =A/>0, (1) 

where A:H § H is a linear finite operator; H is a real Gilbert space; R(A) is the range of 
values of the operator A, which is generally speaking, not limited, and the kernel of the op- 
erator A is nontrivial, kerA~{0}.. Let xA_kerA be a solution of Eq. (i). Given exact in- 
put equations {A, f} for the approximate solution of Eq. (I) we may use the following itera- 
tive methods [5, 8]: 

' :  ' X ~ I  = (e~)E  -b A ) - ~ ( ~  ) x~ ~) + f), xg ~) E H,  k = 0, 1 . . . . .  ( 2 )  

s ~  ) = ah < A~+: ( A x e )  - -  f) '  A x e )  - -  f > 
< Ar (Ax~) __ [), Axe) __ [ > (3) 

Here (., �9 > is a scalar product in H, {a k} is a specified numeric sequence, such that 
0<ah~a.<oo, ~C[--I, oo) is a fixed number, Ex=x, xEH. 

Statement i. a) The sequence {x~(8)} defined by Eqs. (2), (3) converges strongly (in 
the norm H) to the element x ~ x ~ Px~ ~) , where P is the operator of projection of H on ker 
A and the inequality 

^ 

~h+ 1 �9 �9 �9 
is valid; 

b) let /_LkerA, a~ = ] for k = 0, I, ... Then for any fixed ~E[--I, oo) the sequence 
e~ ~, k=0, I, ..., decreases monotonically: ~h~,~k-(~) J"(~), k~0, I, 2, ... Here [I'll: <', . >i/~ 
is the norm in the space H. 

It follows from statement 1 that for any~E[--|, oo) {R~(x~))}(where (Rh(x~))is the action 

operator on the right side of Eq.(1) of the f process of Eqs. (2), (3), having k steps x~ ) 
is the zeroeth iteration) is an approximating sequence(in the terminology of [9.]) for the 
exact set transformation A -~, converse to A. 

Let the right side of Eq. (i) be specified to an accuracy 8, i.e., we have f8 from the 
sphere llf~ In order to demonstrate the regularizing properties of the family 
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{R~(xg~})}: , we must find the dependence k : k(~) (see [3]), such that 

lira sup IIRhc~) Co ')) f6 _ 7cll = o. 
6-~o lit* - HI-<6 

h(6) -* |  

In the case where {Rk(Xo)} is an approximating family consisting of linear operators 
(for example Rk(Xo) does not depend nonlinearly on the iterations x,, x=, ..., x k of any pro- 
cess), the regularizing algorithm can easily be constructed. Principal difficulties occur in 
constructing a regularizing algorithm when Rk(x• ) are nonlinear operators (see [5]). Apparent- 
ly there are two approaches which can be used in constructing regularizing algorithms on the 
basis Of nonlinear iterative methods: the first is "quasilinearization" methods of the type 
of Eqs. (2), (3) using the function ~(~) (see [5]), while the second is based on use of the 
iterative regularization method of [i0]. We note that the second approach is quite univer- 
s~l and permits construction of regularization algorithms on the basis of nonlinear gradient 
methods: accelerated release, minimal discrepancy, and their analogs, as well as solution of 
nonlinear problems [i0]. Here we will consider the second approach relative to the methods 
of Eqs. (2), (3). 

Application of the iterative regularization principle to Eqs. (2), (3) (without disturb- 
ing generality, we assume that a k - I) leads to the expressions 

=(~) ~ ) E  + Bh) -~'=(~)=(~) ~(o ~) ~ + 1  = ~h ~ + [~), 6H ,  (4)  

~(#) = < B~ +: (B~W) - [% B$1 ~) _ / > 

B P~) :8 , <B~ +~(B~i  ~ ' ' f ~ ) ,  hk -- > 
(5) 

where B k = A + a~E, ~k > 0 is the iterative regularization parameter. 
that 

Statement 2. Let ~k>0, ~h+i<~h, k----O, 1, ...; 

It it then true that 

l i m a , = O ,  ~.ah---- oo, lim - - ah+*  ----0, 
h=O ~h~h+l 

and moreover, a k : ak(6) is chosen such that lira 8/oc~  = 0 . .  
6 ~ 0  

Then 

]im sup 5~) -~+, --xll = O. 
6~0 iifS_fll<~6 

Thus, it has been shown that iteration processes Eqs. (4), (5) are regularizing with re- 
spectto Tikhonov's algorithms. 

We note that the class of sequences {~k } is quite broad: for exanmle it contains se- 
quences of the form a~ = c(l + k)-*/2, c > 0 being a constant. 

As a practical illustration of the efficiency of the methods under consideration we will 
examine the following converse thermal conductivity boundary problem (see [2]). 

Let the temperature field T(y, t) satisfy the differential equation 

OT = a~ O2T 

at a~ 
, O<y<oo, O<t~-~tl, 

and the following conditions: 

OT (0, t) = - - q  (t). T (y, O) = To, -~V 

It is assumed that To is a constant quantity, and to an accuracy ~ the temperature 
:T~ (t) = T (y~, t):: 
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Fig. i. Results of converse thermal 
conductivity problem solution for ex- 
act initial values (~o = 0, curve 4) 
and for perturbed (do = 1%) but pre- 
liminarily smoothed cubic svlines 
(curve 2) : i) T: ~ (t) ; 2) tenth inter- 
ation of method of [5]; 3) exact val- 
ues of T(0, t); 5) calculated values 
of T(0, t). 

.i'[T6x (t) - -  T~ (t)] * dt ~ 6 ~, T~ (t) = T (Yl, l), Yl > O. 
0 

It is required that we recreate the thermal flux density q(t). It is known that q(t) is de- 
fined by the following type I integral equation: 

T~ (t) - -  To a~ ( exp W Y~ q(~) - -  d T .  

V'~ b 4W (t-- 'O ] / t - - ~  
(6) 

Perturbation of the initial Tt(t) is accomplished in the following manner: T ~, (t)~-T1(t) 
(l+~0~) , where ~o is the value of the perturbation being modeled: $6[--I, I] is a random 
value with equiprobable distribution law. To solve Eq. (6) we use methods of the tvpe of Eos. 
(2), (3), with the regularizing approximation chosen from discrepancy with a priori specifi- 
cation (depending on 6) of the number of iterations k = k(d). The results of a = I, tl = i, 
xo = 0, yl = 0.25, do = 0 and 60 = 1%. In the example considered, use of unperturbed initial 
data gives a quite exact approximation to the original solution (see Fig. i). 

After the thermal flux density was reestablished the temoerature T(0, t) was calculated: 
at Yl = 0 it was calculated by location of the integrals from Eo. (6). Results are vresented 
in Fig. i. We note that calculations were performed for other values of y~: 0~yi~0,25 
and 6:0<60~5% , and in all cases results were obtained in 5-10 iterations. The numerical 
modeling procedure permits conclusions as to the efficiency of the methods considered for so- 
lution of converse problems. 

NOTATION 

A*, conjugate operator; k, iteration index; xo, initial approximation; E, identity op- 
erator; d, uncertainty level on right side of equation; T, temperature; t, time; a, thermal 
diffusivity coefficient; q, thermal flux density; %, thermal conductivity coefficient; y, ,spa- 
tial coordinate; To, initial temperature distribution; tt, maximum value of variable t; TI ~, 
perturbed temperature values; yt, coordinate at which Ttdismeasured; T(0, t), calculated 
temperature distribution. 
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ALGORITHMS FOR ESTIMATING OPTIMUM DIMENSIONALITV OF AN APPROXIMATE 

SOLUTION OF THE CONVERSE THERMAL CONDUCTIVITY PROBLEM 

Yu. E. Voskoboinikov ~ UDC 536.24 

Algorithms are presented for calculating the optimum dimensionality of an a~prox- 
imate solution, using various a priori data on the uncertainty to which the right 
side of the operator equation is specified, 

Formulation of the Problem. Many converse thermal conductivity problems reduce to solu- 
tion of a type I operator equation [i] 

K~ : [, (I) 

where ~(x) , f(y) are functions of the spaces ~, F; K is a completely continuous operator the 
null space of which is empty. The right side of f(y) is specified by measurements at a dis- 
crete set {yi } of values T~----f(Yi) ~-~ , i = i, 2, ..., n, where [i is the random uncertainty 
(measurement noise) at the point Yi' It is necessary that we construct a solution of inte- 
gral equation (i) from the initial data, {N, fl, f~ ..... [~} . As is well known, such a problem 
is incorrectly formulated [2], and various stable methods are used for its solution. 

In a number of methods, for the approximate solution of Eq. (I) the element 9N(x) of a 
finite dimensional space ~N of dimensionality N is used [3]. The base functions of such a 
space may be either eigenfunctions of the operator K, or a set of some functions with good 
approximation properties. With such a construction of the approximate solution, the dimen- 
sionality N plays the role of a unique regularization parameter and determines the accuracy 
of the solution constructed. Choice of "suitable" dimensionality depends on both the level 
of uncertainty in the measurements, and the differential properties of the unknown solution. 
With reduced dimensionality the solution r will not contain the "fine structure" of the 
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